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Abstract

The application of a symplectic integrator to a Hamiltonian system formally conserves the value of a modified, or
shadow, Hamiltonian defined by some asymptotic expansion in powers of the step size. An earlier article describes how
it is possible to construct highly accurate shadow Hamiltonian approximations using information readily available from
the numerical integration. This article improves on this construction by giving formulas of order up to 24 (not just up to
8) and by greatly reducing both storage requirements and roundoff error. More significantly, these high order formulas
yield remarkable results not evident for 8th order formulas, even for systems as complex as the molecular dynamics of
water. These numerical experiments not only illuminate theoretical properties of shadow Hamiltonians but also give
practical information about the accuracy of a simulation. By removing systematic energy fluctuations, they reveal
the rate of energy drift for a given step size and uncover the ill effects of using switching functions that do not have
enough smoothness.
© 2005 Published by Elsevier Inc.
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1. Introduction

For the numerical solution of Hamiltonian systems of ordinary differential equations, it is common to
monitor energy conservation as a check on accuracy. Due to the finite step size of a numerical integrator,
it is normal for the total energy to fluctuate systematically on a short time scale and to drift randomly with
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an upward bias on a very long time scale. Both the fluctuations and the random drift are acceptable if suf-
ficiently small. Unfortunately, unacceptably large random drift can be obscured by the fluctuations until a
significant fraction of the simulation has been performed. Indeed, a molecular dynamics (MD) simulation
may run on a computer for days before (unacceptable) energy drift can be observed. Somewhat remarkably
there is another similar quantity that is much better conserved — indeed, 100,000 times better for typical
MD simulations. This modified or shadow Hamiltonian ' is a result of applying a particular style of back-
ward error analysis to numerical integrators; see [2] and references therein. Moreover, an eminently prac-
tical construction for the shadow Hamiltonian is available [3]. The contribution of this work is to present a
much more accurate and more efficient implementation and to report some very interesting experimental
findings. In particular, these findings confirm the utility of the theory and affirm the robustness of shadow
Hamiltonians. In addition, these high accuracy shadow Hamiltonians are an excellent diagnostic tool for
assessing the impact of finite step size and of computational artifacts such as switching functions.
A Hamiltonian system has the form

. 0 7
x=JH,(x), J= [ }7
-1 0

where the Hamiltonian H(x) is a scalar function of position ¢ and conjugate momenta p, represented
collectively as x = [¢"p"]", and where the subscript x denotes differentiation.

Solving such Hamiltonian systems of equations numerically yields an approximate solution at discrete
points in time separated by an amount /4, with an integrator @, evolving values x" = x(nh) at each step
as X" = @,(x"). An example of a numerical integrator is the leapfrog method which, for a separable Ham-
iltonian H(g,p) = 1p"M~'p+ U(q) with M a diagonal mass matrix and U(q) the potential energy function,

defines the values ¢" ', p"*! (F""') in terms of the values ¢",p" (,F") by:
pn+1/2 :pn +%th’

qn+1 =q" _~_hM71pn+1/27
Fn+1 — _Uq(qnﬂ)’

pn+1 :pn+l/2 4 %hFﬂ‘F].

This formulation of the leapfrog method is often called velocity Verlet.

Generally, the most fruitful way to analyze the accuracy of a discrete approximation to a dynamical
system is to express the effect of discretization as a modification to the right-hand side vector field.
Such a modified, or shadow, vector field can be expressed uniquely as a formal expansion in powers
of the step size. The asymptotic series converges for constant coefficient linear ordinary differential
equations (for small enough step size) but generally does not converge in the nonlinear case. There
is a proof of nonconvergence in [4] for the shadow vector field for the Euler method applied to
x = x*>. Nonetheless, a truncated expansion very accurately represents many features of the discrete
dynamics.

For a Hamiltonian system, the shadow vector field is that of a Hamiltonian system if and only if the
integrator is symplectic. An integrator @, is symplectic if

@ (x) TPy (x) = J.

! The use of the more descriptive term “shadow” rather than “modified” is suggested in [1]. The notion of a shadow Hamiltonian is
different from the theory of shadowing in dynamical systems, which asserts the existence of a nearby trajectory.
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The leapfrog method is an example of a symplectic integrator. If @, is symplectic, the numerical trajectory
{x"} is, therefore, formally the solution of a Hamiltonian system with Hamiltonian

H"(x) = H(x) + hny (x) + By (x) + - -

For the analytical solution, the Hamiltonian is a conserved quantity. For the numerical solution, it can be
shown [5,2] that there exists k = k(h) for which

Hy(x") — Hyy (x") = O(e™/")  for time nh < /",

where H)(x) = truncation of H"(x) just before the #* term. A nice numerical example of the exponentially
small error in conservation of the shadow Hamiltonian is given in [6]. However, because of the exponential
growth of trajectory errors with the length ¢ of the time interval under consideration, the analytical trajec-
tory x”(¢) for the Hamiltonian system with Hamiltonian H(x) satisfies

x(nh) — x" = O(e™/")  for time nh < c/h only,

which for MD is not very long at all.

The truncated shadow Hamiltonian (TSH) H 4, involves analytical derivatives of H and is expensive to
compute. Nonetheless, it is possible to construct highly accurate shadow Hamiltonian approximations
using information readily available from the numerical integration. Such a possibility is presented in [3],
yielding an interpolated shadow Hamiltonian (ISH). The idea of the construction is to extend phase space
so that the new Hamiltonian H(y) is homogeneous of degree 2 and to use the fact that for such a Hamil-
tonian H(y(t)) =1 3(¢)"Jy(¢), which enables H(y) and hence H(x) to be evaluated from a trajectory. The
construction of these interpolated shadow Hamiltonians assumes that the integrator is obtained by splitting
the Hamiltonian, but otherwise is nearly independent of the details of the Hamiltonian system or the inte-
grator, enabling their calculation even for systems for which the truncated shadow Hamiltonians are
impractical or impossible to compute. The degree k& of polynomial interpolant used in this construction
determines the order of accuracy 2k of the resulting interpolated shadow Hamiltonian Hpy, so that

Hppy(x) = H"(x) + O(K*).

Concise but complete details are given in Section 4. Another, more direct but less systematic, approach to
practical construction of shadow Hamiltonians is illustrated in [7] for the leapfrog method.

Remarkable results are obtained from interpolated shadow Hamiltonians with accuracy order as high as
24 and applied to systems as complex as the molecular dynamics of water. Interesting results are obtained
also for truncated shadow Hamiltonians with accuracy order as high as 12 and applied to systems as com-
plex as the two-dimensional Hénon—Heiles Hamiltonian.

As shown in Section 2, these experiments shed light on theoretical properties of shadow Hamiltonians.
They indicate that the conservation of the truncated and interpolated shadow Hamiltonians gets only better
as the order increases and that this is true even for a Hamiltonian that is only C'. The range of fluctuations
for the shadow Hamiltonian in the limit of high order depends on the smoothness of the potential, being
smaller for smoother potentials. For the limit of small step size, exponential convergence is observed for
molecular dynamics of water. Comparisons between truncated and interpolated shadow Hamiltonians
for simple one- and two-dimensional potentials show that conservation of interpolated shadow Hamiltoni-
ans is somewhat inferior to that of truncated shadow Hamiltonians of the same order for sufficiently high
orders.

Section 3 shows that these experiments also give practical information about the accuracy of a simula-
tion. A relatively short computation can reveal the rate of energy drift as a function of step size. In one
study, a simulation using one-sided harmonic restraints to contain molecules to a sphere exhibits occasional
sudden jumps in the interpolated shadow Hamiltonians that are many orders of magnitude greater than the
typical fluctuations. These large scale jumps coincide with collisions with the containing walls, events not
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visible in plots of the energy alone. Other simulations reveal the ill effects of using switching functions that
do not have enough smoothness, and still others explore the benefit of multiple time stepping.

Section 5 gives details of the implementation of shadow Hamiltonians. It is improved from that in [3] in
three respects: (i) coefficients are given for formulas of order up to 24 not just up to 8; (ii) these formulas are
revised to employ much more storage-efficient backward differences instead of centered differences; (iii) the
revised algorithm reduces roundoff error by a direct calculation of first and second order backward differ-
ences that avoids blatant instances of cancellation. Concerning the value of very high order, there are cases
where at least 20th order is needed to observe the behavior of the shadow Hamiltonian.

The coefficients for calculating interpolated shadow Hamiltonians up to order 24 are given in Appendix
B. These formulas are also available at URL http://bionum.cs.purdue.edu/hamiltonian in the form of C
code that forms part of the Hamiltonian solver used to obtain the results of this paper for systems other
than MD.

2. Theoretical studies

The first four subsections consider how well the shadow energy is conserved and the fifth considers
trajectory accuracy. Conservation is measured as the range max,H% (x") — min,H}, (x"), where the
H'", (x") are the values of the given shadow Hamiltonian at time steps [ k/2 [ k/21+ 1,. .. Msteps — [ k/2 ] with
Nseps the total number of time steps in the simulation.

2.1. Comparison between truncated and interpolated shadow Hamiltonians

Here the truncated and the interpolated shadow Hamiltonians are compared on the basis of which is
better conserved by the numerical solution. Section 2.5 considers how well analytical solutions of each
of the shadow Hamiltonian equations of motion track numerical trajectories. Both sets of experiments
show that the interpolated shadow Hamiltonian does not quite as well capture the numerics as does the
truncated shadow Hamiltonian.

The first test problem is a one-dimensional double well potential H(q,p) =1p* + 1 (4> — 1)* with initial
values ¢(0) =0, p(0) =0.2.

The second test problem is the two-dimensional Hénon—Heiles Hamiltonian

H(q,p) =Ypt + 1) + Ma1 + & + 2419, — 2a3),

in which the first term represents kinetic energy and the second term represents potential energy U(g) with
q = [q1,92]" and p = [p1,p>]". This system exhibits chaotic behavior for energies higher than 1/12, which is
the case for the initial values of ¢,(0) = 1/2, ¢,(0) = p;(0) = p>(0) = 0 used in this study.

For simple potentials such as the double well or Hénon—Heiles, it is possible to obtain expressions for the
lower order truncated shadow Hamiltonians. This allows for comparisons to be made between these quan-
tities and the interpolated shadow Hamiltonians of corresponding orders. Truncated shadow Hamiltonians
are obtained by using Mathematica to form interpolated shadow Hamiltonians H|,; and to gather terms in
powers of the step size 4. These expressions are then truncated at the appropriate power of % to yield the
desired truncated shadow Hamiltonian. Correctness is checked by comparing these results to shadow equa-
tions obtained symbolically from first principles.

We compared the two approximate shadow Hamiltonians for both the double well potential and
Hénon—Heiles Hamiltonian for a variety of step sizes. Consistently it is observed that the interpolated sha-
dow Hamiltonian is better conserved for lower orders — probably due to the exact conservation property of
the ISH for quadratic Hamiltonians [3] — but as the order gets higher, the truncated shadow Hamiltonian is
better conserved. The ultimate superiority of the truncated shadow Hamiltonian over interpolated shadow
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Hamiltonian is clearly shown in Fig. 1, which plots energy range vs. order 2k for the double well potential
for duration 1000 time units and / = 0.3, with both the truncated shadow Hamiltonian (TSH) and the inter-
polated shadow Hamiltonian on same semi-log plot. Truncated shadow Hamiltonian conservation data
are plotted as asterisks connected by solid lines, and interpolated shadow Hamiltonian conservation data
are plotted as open circles connected by dotted lines. Fig. 2 does the same for Hénon—Heiles Hamiltonian
for duration 1000 time units and step size 0.9, again with both interpolated and truncated shadow Hamil-
tonian on same plot. The interpolatory shadow Hamiltonians do relatively better here because they are ex-
act for quadratic Hamiltonians unlike any of the truncated shadow Hamiltonians, and Hénon—Heiles
Hamiltonian is more nearly quadratic than the double well potential. The number of lower orders for which
the interpolated shadow Hamiltonians are better conserved than the truncated ones is observed to decrease
as the step size decreases.

2.2. Convergence

Numerical results for the double well potential and Hénon—Heiles Hamiltonian for various step sizes are
consistent with the belief that truncated shadow Hamiltonians do not converge as the order goes to infinity.
Nonetheless, these experiments strongly suggest that accuracy gets only better with increasing order. The re-
sult which best illustrates limited convergence is shown in Fig. 2, which is a plot of energy range vs. order 2k
for Hénon—Heiles potential for 2 = 0.9. (Instability occurs for 4 just greater than 0.93.) The beginnings of a
leveling off are also apparent in the same type of plot for the double well potential with 4 = 0.5.

Convergence is also investigated, but only for interpolated shadow Hamiltonians, for the molecular
dynamics of a system of 125 water molecules whose atoms interact via bonded forces, acting among atoms
within the same molecule, and nonbonded forces, acting between all intermolecular atom pairs. See Appen-
dix A.2 for complete details.

The system of water molecules is simulated with a variety of step sizes and interpolated shadow Ham-
iltonians up to 24th order are evaluated. Fig. 3 shows the ISH range (in kcal/mol) vs. order 2k for both
h=0.5fs and & = 1.0 fs for duration 100 ps. The limiting value for large k of the range of energy fluctua-
tions is smaller when a smaller step size /4 is used.

Also, Figs. 1-3 illustrate how the conservation of the interpolated shadow Hamiltonians Hpyy is better
for even values k than for odd values.
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Fig. 1. Conservation of ISH (dashed) and TSH (solid) vs. order 2k for double well, # = 0.3.
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Fig. 2. Conservation of ISH (dashed) and TSH (solid) vs. order 2k for Hénon—Heiles, # = 0.9.
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Fig. 3. Conservation of ISH vs. order 2k for molecular dynamics, 4 = 0.5 fs and 4 = 1.0 fs.
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This dependence on k being even or odd arises because the construction of interpolated shadow Ham-
iltonians is somewhat different in these two cases. Nonetheless, the conservation of Hiy 1 4 is always supe-

rior to that of Hipy.
2.3. Smoothness needed

The fourth test problem has a one-dimensional C' continuous piecewise potential,

| 14, q <0,
H(q,p)=§p2+U(q)7 U(g) =10, 0<g<6,
Lg—67 g=6

with initial conditions ¢(0) = 0, p(0) = V/8.

As shown in [8, Figs. B.5 and B.6], the lack of smoothness in the piecewise potential has a clearly
deleterious effect on the conservation of interpolated shadow Hamiltonians. The limiting value of the
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fluctuations of these shadow Hamiltonians is much larger relative to the conservation of the actual energy
than for other, smoother potentials. With 4 =0.05 and a duration of 10,000 time units, the energy has a
variation of about 0.0065 and this decreases for ISHs as the order increases leveling off at about 0.0041.
Larger step sizes yield ever smaller decreases in energy fluctuations.

The energy in these simulations appears to remain bounded for all time even though the map @, has jumps
in its 1st derivative. An extension of the Moser twist theorem guarantees conservation of energy for maps
®;, € C* for £ >3 [9]. This is conjectured to hold for ¢ > 2 and counterexamples are known for £ = 1.

The fifth test problem is a molecular dynamics simulation of water in which the switching distance for
Lennard-Jones potential is set to be just 4 A, which is small enough that the potential is only C' continuous.
This again has a harmful effect on the conservation of interpolated shadow Hamiltonians. In fact, for a
10 ps simulation with step size 0.25 fs the conservation of the 24th order interpolated shadow Hamiltonian
is 3.5 times worse than when Lennard-Jones potential is infinitely differentiable.

The cases of the C' continuous piecewise quadratic potential given previously and molecular dynamics
with a switching distance of 4 A stand alone among the potentials used in this study in that they are not
infinitely differentiable. Both highlight one of the benefits of the construction of interpolated shadow Ham-
iltonians, namely the independence of that construction from many of the details of the Hamiltonian
system to be solved.

2.4. Exponential convergence

Theoretically, the limiting value of the fluctuation range of the shadow Hamiltonian as a function of step
size i behaves as exp(—c/h) for some constant ¢. Fig. 4 plots the energy range for the 24th order interpolated
shadow Hamiltonian for a 100 ps simulation of water vs. 1/h for A= 0.25, 0.5, 0.75, 1.0, 1.25, 1.5. This
agrees very well with theory until the roundoff error level is reached. With a step size & = 0.25 fs the inter-
polated shadow Hamiltonian varies only in the 13th decimal digit over the length of the simulation. That
this variation is due to roundoff error is suggested both by the very small magnitude of the fluctuations and
by the fact that the conservation of the interpolated shadow Hamiltonian actually becomes worse when the
step size is reduced from 0.25 to 0.125 fs. (The fluctuations are at the level of 15,000 U of roundoff error,
which is consistent with the error accumulation and the cancellation that might be expected. The fluctua-
tions for the double well potential are 400 U of roundoff and for Hénon-Heiles Hamiltonian 80 U.)

Similar results are obtained for the double well potential, but results for Hénon—Heiles Hamiltonian are
less convincing.
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Fig. 4. Conservation of 24th order ISH vs. 1/h for molecular dynamics.
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Fig. 5. Trajectory discrepancy vs. time for Hénon—Heiles TSH, /2 =0.2.

2.5. Trajectory accuracy

Another question of interest for shadow Hamiltonians is how well their trajectories track the numerical
trajectory. The truncated and interpolated forms of the shadow equations were solved to high accuracy >
to produce trajectories associated with the two different types of shadow equations for Hénon—Heiles Ham-
iltonian with 2 = 0.2 for a time interval of 500 time units. These trajectories were compared to the numerical
trajectory calculated by the leapfrog method with a step size of 0.2 and evaluated according to the 2-norm
of the discrepancy between the numerical trajectory and the shadow Hamiltonian trajectory at each step
size, where the discrepancy is the difference between the two trajectories.

Fig. 5 shows the trajectory discrepancies as a function of time for the TSH for orders 2k =2,4,...,12 for
the leapfrog method with step size # = 0.2. The numerical trajectory fairly rapidly separates from trajectories
associated with the shadow equations, both interpolated and truncated. As expected, trajectories associated
with shadow equations of higher order track the numerical solution for a longer time than do trajectories
associated with shadow equations of lower orders, at least up to 12th order (the limit to which this study
was carried out). The relatively short time that solutions of the truncated shadow Hamiltonian system track
the numerical solution is in accord with the theory, which asserts the long-time conservation of the shadow
Hamiltonian but only a short-time agreement between numerical and shadow Hamiltonian trajectories.

For formulas of orders 2,4,...,12 the trajectory discrepancy is always less for the truncated shadow
Hamiltonians rather than for the interpolated shadow Hamiltonians. This is shown in [8, Fig. 2.6], which
plots the trajectory discrepancies for the 12th order truncated and interpolated shadow Hamiltonians.

3. Applied studies

Observing the behavior of the shadow Hamiltonian is useful in selecting algorithms and their
parameters.

2 Integration was by the 4th order Runge—Kutta method with step size hgx = 0.00015625. An estimate of the error in the shadow
Hamiltonian trajectories was found by taking the 2-norm of 1/15th the difference between the trajectory calculated with a step size of
2hrk and the trajectory calculated with a step size of sirk. The estimated error in the shadow Hamiltonian trajectories is less than 5%
for both the truncated and interpolated equations over the entire length of the simulation.
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with r; the distance from the origin to the ith atom. This potential takes effect gnly outside a radiuseof I'BCS
and is zero for all atoms inside this radius. In this study the values rgc =21 A, kpc =1 kcal/mol/A?, and
m = 2 are used. The value m = 2 corresponds to the customary one-sided harmonic potential.

Plotted in Fig. 10 is the 24th order interpolated shadow Hamiltonian as a function of time for a 50 ps
molecular dynamics simulation of water with step size 2 = 0.5 fs. Over the length of the simulation this sha-
dow Hamiltonian is well conserved, with the exception of occasional sudden and clearly delineated jumps.
In these instances the conservation of the interpolated shadow Hamiltonians is orders of magnitude worse
for a handful of time steps before settling back down into another well conserved regime. These jumps seem
to indicate some sort of event not apparent from plots of the energy or lower order interpolated shadow
Hamiltonians. Further investigation determines that the jumps coincide with collisions with the soft spher-
ical wall created by the restraints.

Accordingly, experiments were performed comparing m = 2 with higher values of m. The following table
shows the results for water with step size & = 1.0 fs. The top row is the exponent m used in the boundary
restraint and the bottom row is the range of the 24th order ISH:

m 2 4 6 8 10
ISH range 0.000991 0.000084 0.000024 0.000032 0.000032

Conservation is best from m = 6 up.
3.4. Multiple time stepping

“Impulse” multiple time stepping (MTS), most commonly known as r-RESPA, is a generalization of the
leapfrog method which exploits a splitting of the potential U = Up, + Uyow SO that the more costly slow

part and its gradient is evaluated with a longer step size 4. For example, if the fast part is evaluated twice
per step, one complete step is given by:

pn+l/4 :pn +%th7

qn+1/2 _ qn +%hM71pn+l/4,
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Fig. 10. 24th order ISH for 50 ps simulation of water with C! restraints, & = 0.5 fs.
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/2 *Ufast,q(qnﬂ/z),
P = A %thH/z,
qn+1 — qn+1/2 +%hM71pn+3/4,
el — _Ufast,q(qn+1) _ 2Uslow,q(qn+l)>

+1 __ . nt+3/4 1 n+1
Pt =p et

This integrator was tested on water with the fast part consisting of the bonded forces and the boundary
restraints and the slow part consisting of the nonbonded electrostatics and Lennard-Jones terms.

Tabulated below for a 100 ps simulation for three different (outer) step sizes 4 is the range of the 24th
ISH for MTS and for leapfrog:

h 1.0 1.5 2.0
ISH range for MTS 0.000061 0.022 0.435
ISH range for leapfrog 0.000068 0.033 0.977

Given below is a similar table but for the actual energy rather than the 24th ISH:

h 1.0 1.5 2.0
Energy range for MTS 2.022 4.852 8.858
Energy range for leapfrog 5.716 13.362 24.981

The results validate the applicability of interpolated shadow Hamiltonians to (symplectic) MTS,
although, for the given splitting, they show only a modest improvement for MTS over leapfrog.

4. Interpolated shadow Hamiltonians

The process specified here for the construction of the interpolated shadow Hamiltonian is from [3]. Its
derivation assumes the existence of the shadow Hamiltonian.

4.1. Augmented integrator

For some given Hamiltonian H, let @, be an integrator where one step of size / is the composition of
exact h-flows for Hamiltonians H, + H, +---+ H; = H. Assume that each Hamiltonian H/(x) is sufficiently
smooth on some domain containing the infinite time trajectory. For instance, for a separable Hamiltonian
system with H(q,p) =1p™™ 'p+ U(q) the leapfrog method has L=3 and H(x)=1U(g),
H,(x) =1p"™'p, and H3(x) =1U(q). Define the homogeneous extension of a Hamiltonian by

def _ _
H(q,o,p, B) = o’H (o 'q 0" p)

and let y&[¢7, «, pT, f]". Then, as shown in [3]

H(x(1)) = 5(1) Ty (1),
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where y(7) is the solution for the homogeneous extension H (y) of H(x) with « initially 1 and where J is sim-
ilar to J but of augmented dimension. Define the augmented method Y"1 =y,(y") for H to be the com-
position of exact flows for systems with Hamiltonians Hy, H,, ..., H; where

def _ —
Hy(g,%,p, B) = o*Hi(2 ' q,07 " p).
For example, the augmented leapfrog method with «° = 1 is given by:
h
pn+1/2 :pn +§Fn,

ﬁn+]/2 _ ﬁn _’_ﬁ

5 (_(qn)TFn _ 2Un)7

qn+1 _ qn _’_thler»l/Z7

Fn+1 _ F(anrl)7
pn+l :pn+1/2 +an+l’

n+1 n+1/2 h n+I\T n+1 n+1
P = R g a0,

Let H'(¢,p) be the shadow Hamiltonian of the original method @,. Then it can be shown [3] that the aug-
mented method ¥, has a shadow Hamiltonian
H"(q,,p, B) = H" (47" q,47'p).

Furthermore, let the shadow Hamiltonians H" and H " have solutions x;(?) and y;(¢), respectively. Then it is
shown in [3] that

H" (1)) = 33,(1) T, (1)

4.2. Construction of H s for even k

The construction of Hy(q,p) for even values of k follows. See [3] for odd values of k. Given a shadow
extended Hamiltonian system with initial condition y,(0) = [¢",1,p7,0]7, let y,(¢) be its solution with values
yu(jh) = ¥4 (1,(0)),/ = 0,£1,...,+k/2. Let m(¢) be the degree k polynomial interpolant of these k + 1 val-
ues. Following the approach of [3], let:

L /jh/zlr'c(t)TJﬂ: (O)dt, j=24,.. . .k
k"/_jh 7jh/22k k , ] = 44,0, K.

As shown in [3], this has an expansion
Hk‘/' — Hh + cjlhk+2?(0) + cj3hk+4 V(O) 4t @(h2k+2)’

where

def 1. -
p(6) = 1, (0 Ty ()

with the brackets denoting a (k + 1)th divided difference, namely, y(r) & yul=3kh, ... Ltkh, 1. As in [3],
the first /2 — 1 leading error terms can be eliminated by forming a suitable linear combination of the Hy,
j=12,... k2, to yield
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Hpy & Some linear combination of the H,, =H"+ @(th).

The coefficients of these linear combinations are given in Appendix B. A concrete example for the case of
k=41is
Hig(x) = $Has + $Has = H'(x) + O(RY).

5. A better implementation

Shadow Hamiltonians up through order 24 have been obtained and are given in Appendix B. Previously
[3], only shadow Hamiltonians up through order 8 had been obtained. With the use of higher order formu-
las it is all the more important that the required differences be calculated with optimal storage efficiency and
with minimal roundoff error.

In practice, implementation of interpolated shadow Hamiltonians Hj; for odd k is unnecessary when
the goal is to obtain the formulas with highest order accuracy possible, which, as this article indicates, ex-
hibit the best conservation behavior. Implementation of only the even k case is sufficient for this purpose,
and has the advantage that extra work needed to compute differences of midstep quantities is avoided. For
this reason the following discussion is limited to the case of even k.

5.1. Backward difference derivation for even k

This section presents formulas for Hp for even values of k. See [8] for odd values of k. Let g; be the jth
backward difference of y,(7) at ¢ = (k/2)h

a;=V'y,((k/2)h), j=0,1,2,... k,
where the backward difference is defined by VRw(r) = VE=Yw(@) — VE =Yt — h), Vow(t) = w(2). Taking the
case k = 4 as an example, the fourth degree Newton interpolant using backward differences is

(1) = ,(2h) + (t — 2h) vy”T(Zh) 4 (6= 2h)(t — h) —V2)222(22h) A= W) ) V322(32h)
V4, (2h)

+1(t = 20) (P — P L
( )( ) Ve

Hence
ma(sh) = ao + (s — 2)ar +1(s = 2)(s — )a + Ls(s — 2)(s — Das + Ls(s — 2)(s* — 1)ay
and
(o) = a1+ (5~ D+ (5 5+ P + (5"~ 37 b+ D
Define 4;; = a}Ja,;/(2h). Using the facts that A4; =0 and 4;; = —A};, this yields
%M(Sh)TjM(Sh) = Ao — oo + (2 +157) 4o + G+ 1) A3 — G+ 35%) A3 + 3+ B + Ls*) 4y
b 3+ (ot ) (3 )
+ (Ls” + 5" + 15%) 443 + odd powers of .
Average over —1 <5< 1 to obtain Hy, and over —2 < s < 2 to obtain Hy 4, as

1 2
H42 :1/ 1‘1:134(5‘}1)T.71'C4(S]’l)dS and H4‘4 :1/ l1:[34(S}I)TJTM(S]?)dS.
272),2 “=4),2
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From this one finds
Hig = $Hyo + ZHas = Ayg — 3450 + 45 + BAzg — 8431 + 243, — Zdao + 3544 — 3As + 3:A43.
This and other formulas in terms of the A;; for Hjyy with k even can be found in Appendix B.

5.2. Storage considerations

The efficiency of the construction of interpolated shadow Hamiltonians as presented in [3] and reviewed
in Section 4 derives from the fact that the interpolated shadow Hamiltonians Hp; are built from consec-
utive solution values y" ~ %2y —kR2+1 - yn+ki2=1 1+ k2 yalyes which are already being calculated by the
simulation. Differences of these values are formed that represent the interpolants, and these differences are
used to construct the interpolated shadow Hamiltonians. The introduction of these differences of solution
values requires additional storage beyond what is necessary for the simulation alone, because these differ-
ences must be stored. The scheme given in [3] employs centered differences. However, the use of backward
differences, as presented here, results in significant savings in storage costs. Consider the difference tables up
to fourth order differences, which are required for calculating Hg), for both centered and backward differ-
ences. The centered difference table is

8%, (t — 2h)
8yt —3h)
8y, (t = h) &y, (t = h)
'yt — 5h) Syt — 5h)
8y, (1) Sy,(t) Styu(t)
8"yt +1h) Syt +1h)
8y, (t + h) 8%y, (t + h)
'yt +3h)
8"y, (¢ + 2h)

The backward difference table is

Voyh(f —2h)
Vit —h)
Vot —h) V()
V(o) Vey,(t+ h)
Voy(0) Vey(t +h) V(e +2h)
Vit +h) Voyu(t +2h)
Vo, (t + 1) V2y,(t + 2h)
V'y,(t + 2h)

V', (t 4 2h)
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Formulas for the interpolated shadow Hamiltonians are in terms of the doubly underlined values. How-
ever, for purposes of calculating these doubly underlined values, both these and the singly underlined values
must be stored. Thus, to compute Hg using centered differences, eleven sets of values must be stored in
addition to the storage already required for the simulation, while to compute Hg; using backward differ-
ences only 4 additional sets of values must be stored. The Oth difference y, (¢ + 2h) is “free”, since this
consists of the current values of ¢, p, and p.

Assuming k is even, the centered difference table requires extra storage of E” *2i42)=1 k2 3k vectors,
while the backward difference table requires extra storage of only k. The savings are espe(nally 51gn1ﬁcant for
systems with a large number of configurational degrees of freedom and for high order shadow Hamiltonians.

5.3. Rounding error considerations

Using leapfrog integration, the key backward differences of full step quantities from which higher order
differences are calculated are as follows: Vg"™ ! =AM~ 1p" "2 V24" = M~ 'F", calculated before the
leapfrog force update; o"=1, Va"=0 for i >0 which need neither be stored nor computed;
Vptl = %h(F "1 1 F"), which can be calculated during the leapfrog force update so that new and old force
values are available; and V™' = 1h(—(g") F" — 2U" — (¢"*")" F"*! —2U"*"), the first part of which may
be calculated before the leapfrog position update using the values ¢”, F', U" and the second part of which
may be calculated after the leapfrog force update using the values ¢"*!, F**!, U"*'.

Using the preceding expressions, the first and second order backward differences of key full step simu-
lation quantities are found analytically, rather than numerically. Directly calculating low order differences
avoids harmful cancellation, thus avoiding unnecessary rounding error.

As before, let k determine the maximum order of shadow Hamiltonian H}» to be computed. A new row
of the backward difference table consists of the values

vt ntl (vian)T7 Vioc"+l7 (vipn+l)T7 viﬁn-H T’ i=0,1,... , k.
Presented in the context of a single step of the leapfrog method these updates take place as follows:
Vit =MT'FT and Vg™ =Vl -Vl i=34,. 0k,
Vg =Vq + Vg,
¢ =g+ Vg,

Vphit = 3hF",

n h n n n
V Bl = 5(—(61 )T F" - 20",
Fn+1 :F(t]nH),

vpn+1 — vpz;} + %thJrl and Vianrl — viflpnﬂ _ vifl n7 i= 2{7 37 . ,k,

VB = Ve + h(—(q”“fF"“—zU"“) and VB =V VIR i=2,3,

1 h
n+1 — _M n+1 _F11+1 .
P 7 Vgt
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Only differences of f, not f itself, need to be computed, since only these are necessary to calculate interpo-
lated shadow Hamiltonian formulas. This is the case because all differences of « of first order and above are
zero, so terms involving Oth order differences of i drop out.

As constructed, the interpolated shadow Hamiltonians are defined by linear combinations of 4;; terms.
As the order of interpolated shadow Hamiltonians increases, these formulas quickly become very long and
impractical to code by hand. Instead, the coefficients of the 4, terms in the various Hp equations can be
stored in arrays initialized before integration begins and then referenced as needed, simplifying the expan-
sion to higher values of k. See, for example, the code for a Hamiltonian solver in [8, Appendix B], which is
available electronically from: http://bionum.cs.purdue.edu/hamiltonian.
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Appendix A. Molecular dynamics details

For molecular dynamics of a system of N atoms, the coordinate vectors ¢ and p are each of length 3NV
and the mass matrix is diagonal with each atom mass replicated 3 times.

Molecular dynamics results are obtained using a modified version of a program ~° compatible with
NAMD [10] but limited in scope to enable simpler modification. Interpolated shadow Hamiltonian code
was added to this program by the first author.

3

A.l. Argon

The system studied consists of 250 argon atoms which interact via a nonbonded force between all atom
pairs and which are spherically restrained by an artificial harmonic force. The mass of an argon atom is
39.948 amu.

The potential can be expressed as the sum of nonbonded terms and boundary restraints, where in this
study the nonbonded potential is Lennard-Jones potential Uy 5(q).

The atoms are restrained to a sphere centered about the origin with the spherically symmetric potential
Usc equal to the sum over all i of terms kpcr?, with r; the distance from the origin to the ith atom. In this
study the value kpc = 757 kcal/mol /A2 is used to give energy equal to that of the usual one-sided quadratic
restraints given by Eq. (1) at a distance of about 23 A. The use of pure harmonic restraints rather than one-
sided harmonic restraints avoids unnecessary nonsmoothness.

Lennard-Jones potential exists between all pairs of atoms, with Uj j equal to the sum, over all (i,j)-pairs,

of terms
R\ 12 R\
() ()] )
}’,'j rij

3 Credit: David J. Hardy, Department of Computer Science and Beckman Institute, University of Illinois, 405 North Mathews
Avenue, Urbana, IL 61801-2987 (dhardy@ks.uiuc.edu).
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The minimum value of the potential —E,;, and the equilibrium separation distance R,,;, depend on the
atom types involved in the interaction. For argon-argon interactions, E,;, = 0.2385 kcal/mol and R,;, =
3.4050 A. Commonly in molecular dynamics simulations Lennard-Jones potential is taken to be zero
outside a given cutoff distance r.. To achieve a smooth transition, a switching function is applied to the po-
tential before the cutoff distance but outside some switching distance rg, so that in this range the contribu-
tion of each intermolecular (i,j)-pair towards the total Up; becomes

Rmin = min ¢
ol (5) " 2(%)
r,'j r,'j

The use of this switching function results in a C' continuous Lennard-Jones potential. However, in this
study the switching distance was chosen large enough that no switching would ever take place, due to
the imposed spherical boundary restraints. Lennard-Jones potential, therefore, remains infinitely differen-
tiable. The one exception occurs in Section 2.3, in which results from molecular dynamics with ry =4 A,
r. =100 A are discussed.

Initial conditions are obtained by using NAMD to equilibrate to a temperature of 106 K.

for ry <7y < 7.

l(rz—r ) (r2 —|—2r —3r2)

(R=r)

A.2. Water

The system studied consists of 125 water molecules whose atoms interact via two bonded forces, acting
between and among atoms within the same molecule, and two nonbonded forces, acting between all inter-
molecular atom pairs. Also the atoms are spherically restrained by an artificial harmonic force. The mass of
a hydrogen atom is 1.0080 amu and that of an oxygen atom is 15.9994 amu.

The potential can be expressed as the sum of bonded terms, nonbonded terms, and boundary restraints,
where in this study the bonded potentials are bond stretching and angle bending and the nonbonded poten-
tials are Lennard-Jones potential and the electrostatic potential, so that

U(q) = Usc(q) + Uvona(q) + Uangle(q) + Uri(q) + Uetec(q).

The atoms are restrained by the same boundary potential as the argon system.

The first bonded potential, the spring bond, is a 2-body interaction between pairs of covalently bonded
atoms, with Upong equal to the sum, over all such (i j)-pairs, of terms ky(r;; — ro)>, with r;; the separation
distance of the two atoms. For the case of hydrogen-oxygen interactions, the coeﬂiment ky, = 450 kcal/
mol/A? and the equilibrium distance ry = 0.957 A.

The angle potential is a 3-body interaction between a consecutively bonded triples of atoms, with
Uingle €qual to the sum, over all such (ij,k)-triples, of terms ky(0 — 0o)>, with 6 the angle in radians
between the vector pointing from atom j to atom i and the vector pointing from atom j to atom k.
For the case of water molecules, the coefficient k= 55 kcal/mol/rad®> and the equilibrium angle
0o = 1.8242 rad.

Lennard-Jones potential exists between all intermolecular pairs of atoms, with Uyp; equal to the sum,
over all intermolecular (i,/)-pairs, of terms given by Eq. (A.1) where Ey;, = 0.046 kcal/mol and Ry, =
0.449 A for hydrogen-hydrogen interactions, Enyi, = 0.0836 kcal/mol and Ry, = 1.9927 A for hydro-
gen—oxygen interactions, and Eg;, =0.1521 kcal/mol and Ry, =3.5364 A for oxygen—oxygen
interactions.

The electrostatic potential U, equals the sum, over all intermolecular atom (i,j)-pairs, of terms

CZZ,

b)
&orij
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where the quantities Z; and Z; are the charges of atom i and atom j, respectively. Atom charges, in units of
electron charge, are 0.417 e for hydrogen and —0.834 ¢ for oxygen bound in water molecules. The coeffi-
cient C = 332.0636 kcal A/mol/e? is Coulomb’s constant. The dielectric constant used is &, = 1. As with Len-
nard-Jones potential, the electrostatic potential can be taken to be zero beyond the cutoff distance r. with a

switching function applied to the potential inside this distance, so that the contribution to Uy from each
intermolecular (i,j)-pair of atoms becomes

2
CZ.Z; ry
/<1j> f0r0<r,-j<rc.

&oFj r?

This results in a C' continuous electrostatic potential. However, in this study a cutoff r. = 100 A was
chosen so that it would never be reached, thus maintaining an infinitely differentiable electrostatic
potential.

Initial conditions are randomly generated by NAMD for a system at 300 K.

Appendix B. Interpolated shadow Hamiltonians up to order 24

The following formulas for shadow Hamiltonians up through order 24 are obtained using
Mathematica:

Hp = Hyp,
Hy = H»),,
Hig = 5H31 +5H
[6] = 20"73,1 T 2"133,
_ 16 5
Hpg) = 51Hao +57Haa,
H N+ 3B+ By
(10] = 1897251 7 5041253 T 15127155,
_ 2 2 7
Hip = 3Hea +35Hes + 555665
1421
H[14 6864H71 + 11440H73 +6864H75 + 1040H77’
1568 14896
H[16 %575H8 2+ %2175H8 4+ 75075H8 6+ 225225H8 8
_ 7938 32634 1458 2997 7129
Hypg = 60775H9 1+ 60775H9 3+ 5005H9 5+ 74800H9 7+ 6806800H9 95

H[ 20] = 4199H102 + 29393H‘04 + 235144H106 + 264537H108 + 2116296H10 105

2247575 83711 _
Hpp) = 8398H11 1+ 411502H11 3+ 6584032H11 s+ 149%856H11 7+ 98760480H11 9+ 888844320H11 115

__ 104544 669735 233530
H[24J - 364021H12~2 + 1456084H12v4 + 1092063H12 6+ 1820105H12 s+ 4004231[_112 10 + 240253860H12 125

Below, these formulas are expressed in terms of backward differences of numerical solution values for even
values of k. See [8] for odd values of k.
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Hyj = A19 — 3420 + 342,

Hpg = A1g — 3o + 5845 + B30 — 345, + 38435 — ZA40 + #2:Aa1 — A + 55443,

125 141 375 500 3
Hpug = A1 — 320 + 3421 + BAsg — BAs g + 2455 — BAso + L0441 — 38445 + 3804453 + Z5Aso — 345,
325 200 45 _ 125 _ 15 1
+ 5052 — 3553+ 5dsa 1320’46,0 +3 462 6.1 ~ 1sasde2 + 308‘4&4 + 77’46757
128 73 256 10976 41 1712 2744 10976
Hyg = A1g — 3420 + 3451 + Bdz 0 — 3845, + 18845, — Pdao + 5244, — 544, + 715A43+585A
_ 3712 406112 43904 6860 _ 31 4 4896 _ 104272 128968 _ 3430
585A 51+ 32175A 52 3575’453 + 1287A54 1306,0 3575A61 32175A62 + 32175A 6,3 7 12874164

4 3136 28544 11368 _ 1568 140 896
3861A6 s+ 1925A70 225225A7 1+ %2175‘47 2 2925A7 3+ 5 29 T4 3861A7 s+ 2145A7 6 1801800’4&0

1918 175 14 8
6825A8 1 32175A8 2+ 96525A8 3 7722A8 st 1755 A8 57 2145‘48«,6 + 6435A8~7’

Hpo = Arg ——A20+250A21 +484A30 _2000A | MBTIA —497A4 +167125A _212625A ) 4 260A

646 3876 2584 323
A A A, — A + SERAG — A + A — BEAG

+ A — S50+ S AGs + BiATe — B + A, — YA + AT

- ?61108294A715 + 14160128590A7=6 18088A8 0ot 13832A8 = i%g;gl\&z + %AS& - 2431A8 4t 1526357483A8>5

- %gi%ZA&f? + 49601809A8 7+ 2116296A9 U 5294077511A9 1+ 11;5998658A9s2 - %523%532203A9a3 + gg%gA“ - 4199A9 5

+ %A% - 46189A9 7+ 92378A9 8 mAlO 0o+ 23279256A101 5173168A10 2+ 29393A1° 3T 184756A10 4

2877 10 135 5
461890A105 184756A10«,6 + 4199A1077 184756A1078 + 46189A10s97

11 432 905 1440 15972 1635 702 35937 665500
Hpg = Ajp — 5A00 + 55801 + 5 A30 — 53A31 + g7 Asn — 557A0 + 5°A4 — Ays + Ay

161 161 3059
+ 55 As0 — A+ 3?2§§§4A — 05 Ass + z‘l%iééésA 4 - ?fﬁAso + 585 A — 55 A
+ 5% A — e Ae 1 508 Aes T 13msAT0 — T AT+ ais A72 — s A7

+ i A7a — gt Ars G5 ATe — Tames0 T ameisAs1 — Sieons As2 + Fisios As

— e Ase + 400 Ass — 7 Ase + 557 AsT T 510500 ~ et T T0m063A0.2

- 235267868138090A9:3 + 2128%;52%90%225[\9,4 - %45753822257630‘6“%5 + 79562517376‘6“’6 - 39163567372A9 7+ {3§}§2A9 8 328440A10 0

+ 1182260319035A10<1 - ;éggg?(l)AWl + }2%2?31\10 37 ggégéiéiAloA + ﬂé{g}‘gAlo,s 25415A106 + 482885A10 7

81675 o 588181 506990
386308A10 s+ 676039A109 + 240253860A11 0 20021155A11 1+ 47322730A11 2 14196819 *11,3
98901 2119392 _ _

+ 1456084A11<4 23661365A11«,5 + 482885A11a6 482885A11 7+ 104006A11 8 676039A11 o+ 676039A11 10
2883046320A120 + 3123200180A12 = 567872760A122 + 170361828A12 3 75716368A124 + 23661365A125

965770A12 6t %380195A12 7 5408312A12 s+ 2028117A12 9 1352078A12,10 + 676039A12~“'
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